Use of microRNA therapy in Cancer treatment: A novel therapeutic approach

  • Preeti Raperia Department of Biotechnology, Maharishi Markanedshwar University, Mullana, Yamuna Nagar, Haryana 133207, India

Abstract

The study of a class of small non-coding RNA molecules, named microRNAs (mi RNAs), has advanced our understanding of many of the fundamental processes of cancer biology and the molecular mechanisms underlying tumor initiation and progression. Mi RNA research has become more and more attractive as evidence is emerging that mi RNAs likely play important regulatory roles virtually in all essential bioprocesses. Looking at this field over the past decade it becomes evident that our understanding of mi RNAs remains rather incomplete. As research continues to reveal the mechanisms underlying cancer therapy efficacy, it is clear that mi RNAs contribute to responses to drug therapy and are themselves modified by drug therapy. One important area for mi RNA research is to understand the functions of mi RNAs and the relevant signaling pathways in the initiation, progression and drug-resistance of tumors to be able to design novel, effective targeted therapeutics that directly target pathologically essential mi RNAs and/or their target genes. Another area of increasing importance is the use of mi RNA signatures in the diagnosis and prognosis of various types of cancers. As the study of non-coding RNAs is increasingly more popular and important, it is without doubt that the next several years of mi RNA research will provide more fascinating results.

References

R.C. Lee, R.L. Feinbaum, V. Ambros. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementary 14 Cell, 75 (5) (Dec 3 1993), pp. 843–854

B. Wightman, I. Ha, G. Ruvkun ,Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans Cell, 75 (5) (Dec 3 1993), pp. 855–862

M. Lagos-Quintana, R. Rauhut, W. Lendeckel, T. Tuschl , Identification of novel genes coding for small expressed RNAs ,Science, 294 (5543) (Oct 26 2001), pp. 853–858

R.C. Lee, V. Ambros ,An extensive class of small RNAs in Caenorhabditis elegans, Science, 294 (5543) (Oct 26 2001), pp. 862–864

N.C. Lau, L.P. Lim, E.G. Weinstein, D.P. Bartel ,An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans , Science, 294 (5543) (Oct 26 2001), pp. 858–862

F. Wahid, A. Shehzad, T. Khan, Y.Y. Kim. MicroRNAs: synthesis, mechanism, function, and recent clinical trials ,Biochimica et Biophysica Acta (BBA) – Molecular Cell Research, 1803 (11) (2010), pp. 1231–1243

R.W. Carthew, E.J. Sontheimer . Origins and mechanisms of miRNAs and siRNAs ,Cell, 136 (4) (20 Feb 2009), pp. 642–655

L.M. Alemán, J. Doench, P.A. Sharp .Comparison of siRNA-induced off-target RNA and protein effects RNA (March 1 2007)

J.F. Abelson, K.Y. Kwan, B.J. O'Roak, et al. Sequence variants in SLITRK1 are associated with Tourette's Syndrome , Science, 310 (5746) (October 14, 2005), pp. 317–320

Z. Yu, Z. Li, N. Jolicoeur, et al. Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers , Nucleic Acids Res, 35 (13) (2007), pp. 4535–4541

E.G. Moss, R.C. Lee, V. Ambros. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA, Cell, 88 (5) (Mar 7 1997), pp. 637–646

G.A. Calin, C.D. Dumitru, M. Shimizu, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia , Proc Natl Acad Sci USA, 99 (24) (Nov 26 2002), pp. 15524–15529

M.T. McManus. MicroRNAs and cancer ,Semin Cancer Biol, 13 (4) (Aug 2003), pp. 253–258

M.Z. Michael, S.M. OC, N.G. van Holst Pellekaan, G.P. Young, R.J. James , Reduced accumulation of specific microRNAs in colorectal neoplasia Mol Cancer Res, 1 (12) (Oct 2003), pp. 882–891

J. Lu, G. Getz, E.A. Miska, et al. MicroRNA expression profiles classify human cancers , Nature, 435 (7043) (Jun 9 2005), pp. 834–838

L. He, J.M. Thomson, M.T. Hemann, et al. A microRNA polycistron as a potential human oncogene, Nature, 435 (7043) (Jun 9 2005), pp. 828–833

K. O'Donnell, E. Wentzel, K. Zeller, C. Dang, J. Mendell. c-Myc-regulated microRNAs modulate E2F1 expression, Nature, 435 (2005), pp. 839–843

D. Hanahan, R.A. Weinberg. Hallmarks of cancer: the next generation, Cell, 144 (5) (Mar 4 2011), pp. 646–674

R. Garzon, S. Liu, M. Fabbri, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1 ,Blood, 113 (25) (Jun 18 2009), pp. 6411–6418

S. Liu, L.C. Wu, J. Pang, et al. Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia , Cancer Cell, 17 (4) (Apr 13 2010), pp. 333–347

L. He, X. He, L.P. Lim, et al. A microRNA component of the p53 tumour suppressor network, Nature, 447 (7148) (Jun 28 2007), pp. 1130–1134

N. Okada, C.P. Lin, M.C. Ribeiro, et al.. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression, Genes Dev, 28 (5) (Mar 1 2014), pp. 438–450

S.F. Tavazoie, C. Alarcon, T. Oskarsson, et al.Endogenous human microRNAs that suppress breast cancer metastasis Nature, 451 (7175) (Jan 10 2008), pp. 147–152

J. Zhang, Y.Y. Du, Y.F. Lin, et al. The cell growth suppressor, mir-126, targets IRS-1 Biochem Biophys Res Commun, 377 (1) (Dec 5 2008), pp. 136–140 Article | PDF (425 K) | View Record in Scopus | Citing articles (120)

B. Liu, X.C. Peng, X.L. Zheng, J. Wang, Y.W. Qin MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo Lung Cancer (Feb 13 2009)

M. Crawford, E. Brawner, K. Batte, et al. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines Biochem Biophys Res Commun, 373 (4) (Sep 5 2008), pp. 607–612 Article | PDF (750 K) | View Record in Scopus | Citing articles (174)

C. Guo, J.F. Sah, L. Beard, J.K. Willson, S.D. Markowitz, K. Guda The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer, 47 (11) (Nov 2008), pp. 939–946

X. Jiang, H. Huang, Z. Li, et al. Blockade of miR-150 maturation by MLL-fusion/MYC/LIN-28 is required for MLL-associated leukemia. Cancer Cell, 22 (4) (Oct 16 2012), pp. 524–535 Article | PDF (2049 K) | View Record in Scopus | Citing articles (44)

P. Gasparini, F. Lovat, M. Fassan, et al. Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation Proc Natl Acad Sci USA (March 10 2014)

O.H. Rokah, G. Granot, A. Ovcharenko, et al. Downregulation of miR-31, miR-155, and miR-564 in chronic myeloid leukemia cells. PLoS ONE, 7 (4) (2012), p. e35501

Z. Li, H. Huang, Y. Li, et al. Up-regulation of a HOXA-PBX3 homeobox-gene signature following down-regulation of miR-181 is associated with adverse prognosis in patients with cytogenetically abnormal AML. Blood, 119 (10) (Mar 8 2012), pp. 2314–2324

S. Schwind, K. Maharry, M.D. Radmacher, et al. Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study J Clin Oncol, 28 (36) (Dec 20 2010), pp. 5257–5264.

A. Ward, A. Balwierz, J.D. Zhang, et al. Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer Oncogene, 32 (9) (Feb 28 2013), pp. 1173–1182

G. Romano, M. Acunzo, M. Garofalo, et al. MiR-494 is regulated by ERK1/2 and modulates TRAIL-induced apoptosis in non–small-cell lung cancer through BIM down-regulation Proc Natl Acad Sci USA, 109 (41) (Oct 9 2012), pp. 16570–16575

Z. Li, Y. Cao, Z. Jie, et al. miR-495 and miR-551a inhibit the migration and invasion of human gastric cancer cells by directly interacting with PRL-3 Cancer Lett, 323 (1) (Oct 1 2012), pp. 41–47

X. Jiang, H. Huang, Z. Li, et al. miR-495 is a tumor-suppressor microRNA down-regulated in MLL-rearranged leukemia Proc Natl Acad Sci USA, 109 (47) (Nov 20 2012), pp. 19397–19402

P. Chen, C. Price, Z. Li, et al. miR-9 is an essential oncogenic microRNA specifically overexpressed in mixed lineage leukemia–rearranged leukemia. Proc Natl Acad Sci USA, 110 (28) (July 9 2013), pp. 11511–11516

S. Mi, Z. Li, P. Chen, et al. Aberrant overexpression and function of the miR-17-92 cluster in MLL-rearranged acute leukemia. Proc Natl Acad Sci USA, 107 (8) (Feb 23 2010), pp. 3710–3715

Z. Li, R.T. Luo, S. Mi, et al. Consistent deregulation of gene expression between human and murine MLL rearrangement leukemias. Cancer Res, 69 (3) (Feb 1 2009), pp. 1109–1116

P. Wong, M. Iwasaki, T.C. Somervaille, et al. The miR-17-92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Res, 70 (9) (May 1 2010), pp. 3833–3842

C.C. Mandal, T. Ghosh-Choudhury, N. Dey, G.G. Choudhury, N. Ghosh-Choudhury. miR-21 is targeted by omega-3 polyunsaturated fatty acid to regulate breast tumor CSF-1 expression Carcinogenesis, 33 (10) (Oct 2012), pp. 1897–1908

M. Acunzo, G. Romano, D. Palmieri, et al. Cross-talk between MET and EGFR in non-small cell lung cancer involves miR-27a and Sprouty2. Proc Natl Acad Sci USA, 110 (21) (May 21, 2013), pp. 8573–8578

H. Moch, M. Lukamowicz-Rajska. miR-30c-2-3p and miR-30a-3p: new pieces of the jigsaw puzzle in HIF2? regulation Cancer Discov, 4 (1) (January 1, 2014), pp. 22–24

Z. Li, J. Lu, M. Sun, et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA, 105 (40) (Oct 7 2008), pp. 15535–15540

Y. Wang, Y. Yu, A. Tsuyada, et al. Transforming growth factor-beta regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene, 30 (12) (Mar 24 2011), pp. 1470–1480

B. Wang, S.H. Hsu, S. Majumder, et al. TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene, 29 (12) (Mar 25 2010), pp. 1787–1797

Z. Wei, L. Cui, Z. Mei, M. Liu, D. Zhang miR-181a mediates metabolic shift in colon cancer cells via the PTEN/AKT pathway FEBS Lett, 588 (9) (May 2 2014), pp. 1773–1779

K.W. Tsai, Y.L. Liao, C.W. Wu, et al. Aberrant expression of miR-196a in gastric cancers and correlation with recurrence Genes Chromosomes Cancer, 51 (4) (Apr 2012), pp. 394–401

Z. Li, H. Huang, P. Chen, et al. miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia Nat Commun, 2 (2012), p. 688

H. Zhou, B. Xiao, F. Zhou, et al. MiR-421 is a functional marker of circulating tumor cells in gastric cancer patients. Biomarkers: biochemical indicators of exposure, response, and susceptibility to chemicals, 17 (2) (Mar 2012), pp. 104–110

R.S. Pillai, S.N. Bhattacharyya, C.G. Artus, et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science, 309 (5740) (Sep 2 2005), pp. 1573–1576

M.A. Valencia-Sanchez, J. Liu, G.J. Hannon, R. Parker. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev, 20 (5) (Mar 1 2006), pp. 515–524

S. Bagga, J. Bracht, S. Hunter, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell, 122 (4) (Aug 26 2005), pp. 553–563

L.P. Lim, N.C. Lau, P. Garrett-Engele, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs Nature, 433 (7027) (Feb 17 2005), pp. 769–773

D.P. Bartel. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116 (2) (Jan 23 2004), pp. 281–297

D.P. Bartel. MicroRNAs: target recognition and regulatory functions. Cell, 136 (2) (Jan 23 2009), pp. 215–233

B.R. Cullen. Transcription and processing of human microRNA precursors. Mol Cell, 16 (6) (Dec 22 2004), pp. 861–865

V. Ambros. The functions of animal microRNAs. Nature, 431 (7006) (Sep 16 2004), pp. 350–355

J. Krutzfeldt, N. Rajewsky, R. Braich, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 438 (7068) (Dec 1 2005), pp. 685–689

A.L. Jackson, S.R. Bartz, J. Schelter, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol, 21 (6) (Jun 2003), pp. 635–637

P. Sood, A. Krek, M. Zavolan, G. Macino, N. Rajewsky. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci USA (Feb 13 2006)

H. He, K. Jazdzewski, W. Li, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA, 102 (52) (Dec 27 2005), pp. 19075–19080

K.K. Farh, A. Grimson, C. Jan, et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science, 310 (5755) (Dec 16 2005), pp. 1817–1821

D.T. Humphreys, B.J. Westman, D.I. Martin, T. Preiss MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA, 102 (47) (Nov 22 2005), pp. 16961–16966

M. Kiriakidou, G.S. Tan, S. Lamprinaki, M. De Planell-Saguer, P.T. Nelson, Z. Mourelatos. An mRNA m7G cap binding-like motif within human Ago2 represses translation Cell, 129 (6) (Jun 15 2007), pp. 1141–1151

G. Mathonnet, M.R. Fabian, Y.V. Svitkin, et al. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science, 317 (5845) (Sep 21 2007), pp. 1764–1767

R. Thermann, M.W. Hentze. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature, 447 (7146) (Jun 14 2007), pp. 875–878

X.C. Ding, H. Grosshans. Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins. EMBO J, 28 (3) (Feb 4 2009), pp. 213–222

C.P. Petersen, M.E. Bordeleau, J. Pelletier, P.A. Sharp Short RNAs repress translation after initiation in mammalian cells. Mol Cell, 21 (4) (Feb 17 2006), pp. 533–542

A. Eulalio, E. Huntzinger, E. Izaurralde. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat Struct Mol Biol, 15 (4) (Apr 2008), pp. 346–353

Published
2019-06-30
How to Cite
[1]
Raperia, P. 2019. Use of microRNA therapy in Cancer treatment: A novel therapeutic approach. Journal of Biological Sciences and Medicine. 5, 2 (Jun. 2019).
Section
Review Articles