Zebrafish as a model organism for cardiovascular studies

Abstract

Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality worldwide. There is a need for a model organism which is cost effective, easy to use and maintain in a lab. Zebrafish qualifies very well for all these criteria. The maintenance cost is much lower than rodents and it is a small animal and easy to use. Adult zebrafish grows to 3-4 cm and females can lay hundreds of eggs daily; providing a good supply of embryos for the experiments. The complete genome of the zebrafish is sequenced, making genetic modifications and related studies possible.

References

Abou Hassan OK, Fahed AC, Batrawi M, Arabi M, Refaat MM, DePalma SR, Nemer GM (2015) NKX2-5 Mutations in an Inbred Consanguineous Population: Genetic and Phenotypic Diversity. Sci Reports 5: 8848. http://doi.org/10.1038/srep08848

Bakkers J (2011) Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovas Res 91(2): 279–288. http://doi.org/10.1093/cvr/cvr098

Bill BR, Petzold AM, Clark KJ, Schimmenti LA, Ekker SC (2009) A Primer for Morpholino Use in Zebrafish. Zebrafish 6(1): 69–77. http://doi.org/10.1089/zeb.2008.0555

Chablais F, Veit J, Rainer G, Jaźwińska A (2011) The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Bio 11: 21. doi:10.1186/1471-213X-11-21

Chakraborty C, Hsu CH, Wen ZH, Lin CS, Agoramoorthy G (2009) Zebrafish: A Complete Animal Model for In Vivo Drug Discovery and Development. Current Drug Metabolism issn 1389-2002/1875-5453. doi 10.2174/138920009787522197

Chan PK, Lin CC, Cheng SH (2009) Noninvasive technique for measurement of heartbeat regularity in zebrafish (Danio rerio) embryos. BMC Biotechnology 9: 11. http://doi.org/10.1186/1472-6750-9-11

González-Rosa JM, Martín V, Peralta M, Torres M, Mercader N (2011) Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138: 1663-1674. doi: 10.1242/dev.060897

Howe DG, Bradford YM, Conlin T, Eagle AE, Fashena D, Frazer K, Westerfield M (2013) ZFIN, the Zebrafish Model Organism Database: increased support for mutants and transgenics. Nuc Acids Res 41: D854–D860. http://doi.org/10.1093/nar/gks938

Huang W, Zhang R, Xu X (2009) Myofibrillogenesis in the developing zebrafish heart: A functional study of tnnt2. Dev Biology 331(2): 237–249. http://doi.org/10.1016/j.ydbio.2009.04.039

Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Joung JK (2013) Efficient In Vivo Genome Editing Using RNA-Guided Nucleases. Nature Biotechnology 31(3): 227–229. http://doi.org/10.1038/nbt.2501

Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell Biology of Ischemia/Reperfusion Injury. International Rev Cell Mol Bio 298: 229–317. http://doi.org/10.1016/B978-0-12-394309-5.00006-7

Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Poss KD (2010) Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464(7288): 601–605. http://doi.org/10.1038/nature08804

Linke WA (2008). Sense and stretchability: The role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovascular Research 77 (4): 637-648. DOI: 10.1016/j.cardiores.2007.03.029

Maes J, Verlooy L, Buenafe OE, de Witte PAM, Esguerra CV, Crawford AD (2012) Evaluation of 14 Organic Solvents and Carriers for Screening Applications in Zebrafish Embryos and Larvae. PLoS ONE 7(10): e43850. http://doi.org/10.1371/journal.pone.0043850

Marian AJ, Salek L, Lutucuta S (2001) Molecular genetics and pathogenesis of hypertrophic cardiomyopathy. Minerva Medica 92(6): 435–451

Nasiadka A, Clark DM (2012) Zebrafish breeding in the laboratory environment. doi:doi: 10.1093/ilar.53.2.161

Pernigo S, Fukuzawa A, Pandini A, Holt M, Kleinjung J, Gautel M, Steiner RA (2015) The crystal structure of the human titin: Obscurin complex reveals a conserved yet specific muscle M-band zipper module. J Mol Biology 427(4): 718-736. doi:http://dx.doi.org/10.1016/j.jmb.2014.11.019

Rocke J, Lees J, Packham I, Chico T (2009) The Zebrafish as a Novel Tool for Cardiovascular Drug Discovery. Recent Patents Cardiovas Drug Discovery issn 1574-8901: 2212-3962. doi 10.2174/157489009787260043

Seeley M, Huang W, Chen Z, Wolff WO, Lin X, Xu X (2007) Depletion of Zebrafish Titin Reduces Cardiac Contractility by Disrupting the Assembly of Z-Discs and A-Bands. Circulation Res 100(2): 238–245. http://doi.org/10.1161/01.RES.0000255758.69821.b5

Targoff KL, Schell T, Yelon D (2008) Nkx Genes Regulate Heart Tube Extension and Exert Differential Effects on Ventricular and Atrial Cell Number. Developmental Bio 322(2): 314–321. http://doi.org/10.1016/j.ydbio.2008.07.037

Targoff KL, Colombo S, George V, Schell T, Kim SH, Solnica-Krezel L, Yelon D (2013) Nkx genes are essential for maintenance of ventricular identity. Development: doi: 10.1242/dev.095562

Yuan S, Sun Z (2009) Microinjection of mRNA and Morpholino Antisense Oligonucleotides in Zebrafish Embryos. JoVE, (27): 1113. http://doi.org/10.3791/1113

Published
2016-03-31
How to Cite
[1]
Narumanchi, S. 2016. Zebrafish as a model organism for cardiovascular studies. Journal of Biological Sciences and Medicine. 2, 1 (Mar. 2016), 16-19.
Section
Mini-Reviews