Histone Modifications by different histone modifiers: insights into histone writers and erasers during chromatin modification

  • Rakesh Srivastava Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea
  • Uma Meshwar Singh International Rice Research Institute (IRRI), South Asia Hub, ICRISAT, Patancheru, Telangana, India
  • Neeraj Kumar Dubey Department of Biotechnology, Central University of Rajasthan, Ajmer, Rajasthan, India

Abstract

A major mechanism regulating eukaryotic cell gene expression is dynamic DNA packaging into strings of nucleosomes. Nucleosomes and their histone components are usually identified as a negative regulatory to gene transcription. The complex regulation of chromatin structure and nucleosome assembly directs accessibility of the RNA polymerase II transcription machinery to DNA that consequently leads to gene transcription. Post-translational modifications of histone proteins are central to the regulation of chromatin structure, playing essential functions in modulating the activation and repression of gene transcription. This review highlights the different types of histone modifications and their different types of modifiers that influence chromatin structure during transcription. 

References

Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis Proc Natl Acad Sci U S A 51:786-794

Allis CD et al. (2007) New nomenclature for chromatin-modifying enzymes Cell 131:633-636 doi:10.1016/j.cell.2007.10.039

Baker SP, Grant PA (2007) The SAGA continues: expanding the cellular role of a transcriptional co-activator complex Oncogene 26:5329-5340 doi:10.1038/sj.onc.1210603

Banerjee T, Chakravarti D (2011) A peek into the complex realm of histone phosphorylation Mol Cell Biol 31:4858-4873 doi:10.1128/MCB.05631-11

Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications Cell research 21:381-395 doi:10.1038/cr.2011.22

Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics Genes Dev 23:781-783 doi:10.1101/gad.1787609

Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact Mol Cell 48:491-507 doi:10.1016/j.molcel.2012.11.006

Cao J, Yan Q (2012) Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer Frontiers in oncology 2:26 doi:10.3389/fonc.2012.00026

Crosio C et al. (2002) Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases Mol Cell Biol 22:874-885

Cubenas-Potts C, Matunis MJ (2013) SUMO: a multifaceted modifier of chromatin structure and function Dev Cell 24:1-12 doi:10.1016/j.devcel.2012.11.020

Dhall A, Wei S, Fierz B, Woodcock CL, Lee TH, Chatterjee C (2014) Sumoylated human histone H4 prevents chromatin compaction by inhibiting long-range internucleosomal interactions J Biol Chem 289:33827-33837 doi:10.1074/jbc.M114.591644

Fong JJ, Nguyen BL, Bridger R, Medrano EE, Wells L, Pan S, Sifers RN (2012) beta-N-Acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3 J Biol Chem 287:12195-12203 doi:10.1074/jbc.M111.315804

Fujiki R et al. (2011) GlcNAcylation of histone H2B facilitates its monoubiquitination Nature 480:557-560 doi:10.1038/nature10656

Goto H, Yasui Y, Nigg EA, Inagaki M (2002) Aurora-B phosphorylates Histone H3 at serine28 with regard to the mitotic chromosome condensation Genes Cells 7:11-17

Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance Nat Rev Genet 13:343-357 doi:10.1038/nrg3173

Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins Nature 446:1017-1022 doi:10.1038/nature05815

Hottiger MO (2015) Nuclear ADP-Ribosylation and Its Role in Chromatin Plasticity, Cell Differentiation, and Epigenetics Annu Rev Biochem 84:227-263 doi:10.1146/annurev-biochem-060614-034506

Huang H, Sabari BR, Garcia BA, Allis CD, Zhao Y (2014) SnapShot: Histone Modifications Cell 159:458-458 e451 doi:10.1016/j.cell.2014.09.037

Izzo A, Schneider R (2010) Chatting histone modifications in mammals Brief Funct Genomics 9:429-443 doi:10.1093/bfgp/elq024

Kerscher O (2007) SUMO junction-what's your function? New insights through SUMO-interacting motifs EMBO Rep 8:550-555 doi:10.1038/sj.embor.7400980

Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators Trends Biochem Sci 31:89-97 doi:10.1016/j.tibs.2005.12.008

Kouzarides T (2007) Chromatin modifications and their function Cell 128:693-705 doi:10.1016/j.cell.2007.02.005

Liu T, Liu PY, Marshall GM (2009) The critical role of the class III histone deacetylase SIRT1 in cancer Cancer Res 69:1702-1705 doi:10.1158/0008-5472.CAN-08-3365

MacPherson L, Tamblyn L, Rajendra S, Bralha F, McPherson JP, Matthews J (2013) 2,3,7,8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14) is a mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation Nucleic Acids Res 41:1604-1621 doi:10.1093/nar/gks1337

Mehta S, Jeffrey KL (2015) Beyond receptors and signaling: epigenetic factors in the regulation of innate immunity Immunol Cell Biol 93:233-244 doi:10.1038/icb.2014.101

Messner S et al. (2010) PARP1 ADP-ribosylates lysine residues of the core histone tails Nucleic Acids Res 38:6350-6362 doi:10.1093/nar/gkq463

Messner S, Hottiger MO (2011) Histone ADP-ribosylation in DNA repair, replication and transcription Trends Cell Biol 21:534-542 doi:10.1016/j.tcb.2011.06.001

Nagel AK, Ball LE (2015) Intracellular protein O-GlcNAc modification integrates nutrient status with transcriptional and metabolic regulation Adv Cancer Res 126:137-166 doi:10.1016/bs.acr.2014.12.003

Nathan D et al. (2006) Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications Genes Dev 20:966-976 doi:10.1101/gad.1404206

Oka S, Kato J, Moss J (2006) Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase J Biol Chem 281:705-713 doi:10.1074/jbc.M510290200

Qian J, Lesage B, Beullens M, Van Eynde A, Bollen M (2011) PP1/Repo-man dephosphorylates mitotic histone H3 at T3 and regulates chromosomal aurora B targeting Curr Biol 21:766-773 doi:10.1016/j.cub.2011.03.047

Rossetto D, Avvakumov N, Cote J (2012) Histone phosphorylation: a chromatin modification involved in diverse nuclear events Epigenetics 7:1098-1108 doi:10.4161/epi.21975

Sakabe K, Wang Z, Hart GW (2010) Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code Proc Natl Acad Sci U S A 107:19915-19920 doi:10.1073/pnas.1009023107

Shi Y et al. (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1 Cell 119:941-953 doi:10.1016/j.cell.2004.12.012

Srivastava R, Ahn SH (2015) Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function Biotechnol Adv 33:856-872 doi:10.1016/j.biotechadv.2015.07.008

Srivastava R, Rai KM, Pandey B, Singh SP, Sawant SV (2015) Spt-Ada-Gcn5-Acetyltransferase (SAGA) Complex in Plants: Genome Wide Identification, Evolutionary Conservation and Functional Determination PLoS One 10:e0134709 doi:10.1371/journal.pone.0134709

Srivastava R, Srivastava R, Singh UM (2014) Understanding the patterns of gene expression during climate change. In: Climate Change Effect on Crop Productivity. CRC Press, Taylor & Francis Group, Print ISBN: 978-1-4822-2920-2 eBook ISBN: 978-1-4822-2921-9 DOI: 10.1201/b17684-14, pp 279-328

Steunou A-L, Rossetto D, Côté J (2014) Regulating chromatin by histone acetylation. In: Fundamentals of chromatin. Springer, pp 147-212

Strahl BD, Allis CD (2000) The language of covalent histone modifications Nature 403:41-45 doi:10.1038/47412

Tan M et al. (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification Cell 146:1016-1028 doi:10.1016/j.cell.2011.08.008

Texari L, Stutz F (2014) Sumoylation and transcription regulation at nuclear pores Chromosoma 124:45-56 doi:10.1007/s00412-014-0481-x

Texari L, Stutz F (2015) Sumoylation and transcription regulation at nuclear pores Chromosoma 124:45-56 doi:10.1007/s00412-014-0481-x

Waddington CH (2012) The epigenotype. 1942 Int J Epidemiol 41:10-13 doi:10.1093/ije/dyr184

Weake VM, Workman JL (2008) Histone ubiquitination: triggering gene activity Mol Cell 29:653-663 doi:10.1016/j.molcel.2008.02.014

Yun M, Wu J, Workman JL, Li B (2011) Readers of histone modifications Cell research 21:564-578 doi:10.1038/cr.2011.42

Zachara NE, Hart GW (2004) O-GlcNAc modification: a nutritional sensor that modulates proteasome function Trends Cell Biol 14:218-221 doi:10.1016/j.tcb.2004.03.005

Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications Nat Struct Mol Biol 20:259-266 doi:10.1038/nsmb.2470

Zhang S, Roche K, Nasheuer HP, Lowndes NF (2011) Modification of histones by sugar beta-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated J Biol Chem 286:37483-37495 doi:10.1074/jbc.M111.284885

Zhang X, Wen H, Shi X (2012) Lysine methylation: beyond histones Acta Biochim Biophys Sin (Shanghai) 44:14-27 doi:10.1093/abbs/gmr100

Zhang Y, Griffin K, Mondal N, Parvin JD (2004) Phosphorylation of histone H2A inhibits transcription on chromatin templates J Biol Chem 279:21866-21872 doi:10.1074/jbc.M400099200

Published
2016-03-31
How to Cite
[1]
Srivastava, R., Singh, U. and Dubey, N. 2016. Histone Modifications by different histone modifiers: insights into histone writers and erasers during chromatin modification. Journal of Biological Sciences and Medicine. 2, 1 (Mar. 2016), 45-54.
Section
Review Articles