Potential of Helianthus annuus for Phytoaccumulation of Multiple Pollutants for Environmental Cleanup:

A Review

  • Priti Chauhan Department of Bioscience and Biotechnology, Banasthali University, Banasthali Rajasthan, India
  • Jyoti Mathur Banasthali Vidyapith

Abstract

With the development of various industrial contaminations through heavy metals has been converted into a severe environmental threat. Heavy metals are continuously polluting the ecosystem and these are harmful to the human being and other biota of the ecosystem. Phytoremediation is a cost-effective method for remediation of the polluted soil and water. The review represents the status of this technique with special emphasis on phytaccumulation of the multi-pollutants like heavy metals, hydrocarbons and other pollutants using Helianthus annuus, a hyperaccumulator plant. Various mechanisms are known for absorption and transportation of heavy metals inside the plant body through metal binding proteins viz metallotheiones, phytochelatins and andioxtant enzymes which enhance the accumulation of metal. Microbial association with plants also acts a significant role in the enhancement of remediation of these pollutants and employ of genetic engineering also enhances the phytoaccumulation of heavy metals.

References

Adler T (1996) Botanical cleanup crews: Using plants to tackle polluted water and soil (phytoremediation). Science News (Washington, DC) 150(3):42-43

Adriano DC (1986) Trace elements in the terrestrial-environment. Springer-Verlag, New York.

Ahmad MS, Ashraf M, Hussain M (2011) Phytotoxic effects of nickel on yield and concentration of macro-and micro-nutrients in sunflower (Helianthus annuus L.) achenes. J Hazard Mat 185(2-3):1295-303

Alves JD, Souza AP, Pôrto ML, Fontes RL, Arruda J, Marques LF (2016) Potential of sunflower, castor bean, common buckwheat and vetiver as lead phytoaccumulators. RevistaBrasileira de EngenhariaAgrícola e Ambiental 20(3):243-249

Angelova VR, Ivanova RV, Ivanov KI, Perifanova-Nemska MN, Uzunova GI (2016) Potential of sunflower (Helianthus annuus L.) for phytoremediation of soils contaminated with heavy metals. World J Sci Eng Technol 10:1-1

Aziz AA, Mabrouk Y, Essa E, El-Metainy Ay, Abou-Youssef Ay (2008) Genetic aspects of heavy metals phytoremediation abilities of sunflower plants. Egyptian J Genet Cytol 37(1)

Bert PF, Jounan DT, De Labrouhe F, Serre PN, Vear F (2002) Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.) 1. QTL involved in resistance to Selerotinia sclerotiorum and Diaporthe helianthi. Theor Appl Genet105:985-993

Bhargava P, Dutta S (2014) Impact of explosive industry effluents on soil quality parameters and heavy metal load - A study of RECL (Rajasthan Explosive and Chemical Limited) Dholpur, Rajasthan, India. Inter Res J Environ Sci 3(11):32-35

Bhogavalli S (2007) Characterization of a Type II Metallothionein from Helianthus Annuus Using Recombinant DNA Techniques. ETD Archive

Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, KapulnikY, Ensley BD Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31(3):860-865

Boonyapookana B, Parkpian P, Techapinyawat S, DeLaune RD, Jugsujinda A (2005) Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides). J Environ Sci Health 40(1):117-137

Brennan MA, Shelley ML (1999) A model of the uptake, translocation, and accumulation of lead (Pb) by maize for the purpose of phytoextraction. Ecol Eng12 (3-4):271-297

Chaves LHG, Maria AE, Ramara S de Souza (2011) Effect on plant growth and heavy metal accumulation by sunflower. J Phytol 3(12): 04-09

Chen H, Cutright T (2001) EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere 45(1):21-28

Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123(3):825-832

Cristiane DCM, Vitor SL, Fernando JSO, Eliana FCS, Escola de-Q (2014) Phytoremediation of Soil Multi-Contaminated with Hydrocarbons and Heavy Metals Using Sunflowers. Inter J Eng Technol 14(05):1-5

Cutright T, Gunda N, Kurt F (2010) Simultaneous hyperaccumulation of multiple heavy metals by Helianthus annuus grown in a contaminated sandy-loam soil. Inter J Phytoremed 12(6):562-573

Davies Jr FT, Puryear JD, Newton RJ, Egilla JN, Saraiva GJA (2002) Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange. J Plant Nutrit 25(11):2389-2407

Desouza MP, Huang CP, Chee N, Terry N (1999) Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209(2):259-263

Dimkpa CO, Merten D, Svatoš A, Büchel G,Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Applied Microbiol 107(5):1687-1696

Doncheva S, Moustakas M, Ananieva K, Chavdarova M, Gesheva E, Vassilevska R,MateevP (2013) Plant response to lead in the presence or absence EDTA in two sunflower genotypes (cultivated H. annuus cv. 1114 and interspecific line H. annuus×H. argophyllus). Environ Sci Pollut Res 20(2):823-833

Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant and Soil 249(1):167-175

Dushenkov V, Kumar PN, Motto H,Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29(5):1239-1245

Eapen S, Singh S, Thorat V, Kaushik CP, Raj K, D’Souza SF (2006) Phytoremediation of radiostrontium (90Sr) and radiocesium (137Cs) using giant milky weed (Calotropis gigantea R. Br.) plants. Chemosphere 65(11):2071-2073

Fässler E, Evangelou MW, Robinson BH, Schulin R (2010) Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS). Chemosphere 80(8):901-907

Fozia A, Muhammad AZ, Muhammad A, Zafar MK (2008) Effect of chromium on growth attributes in sunflower (Helianthus annuus L.). J Environ Sci 20(12):1475-1480

Gajdos É, Lévai L, VeresS, Kovács B (2012) Effects of biofertilizers on maize and sunflower seedlings under cadmium stress. Commun Soil Sci Plant Anal 43(1-2):272-279

Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Science 121(2):151-159

Gong Z, Alef K, Wilke BM, Li P (2005) Dissolution and removal of PAHs from a contaminated soil using sunflower oil. Chemosphere 58(3):291-298

Gopal R, Khurana N (2011) Effect of heavy metal pollutants on sunflower. African J Plant Sci 5(9):531-536

Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146(4):1697-1706

Hamvumba R, Mataa M, Mweetwa AM (2014) Evaluation of sunflower (Helianthus annuus L.), sorghum (Sorghum bicolor L.) and chinese cabbage (Brassica chinensis) for phytoremediation of lead contaminated soils. Environ Poll 3(2):65-73

Hassan SE, Hijri M, St-Arnaud M (2013) Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. New Biotech 30(6):780-787

Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Tech 31(3):800-805

Iqbal J, Gisclair D, McMillin DJ, Portier RJ (2007) Aspects of petrochemical pollution in southeastern Louisiana (USA): pre‐Katrina background and source characterization. Environ Toxicol Chem: An Inter J 26(9):2001-2009

January MC, Cutright TJ, Van Keulen H, Wei R (2008) Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: Can Helianthus annuus hyperaccumulate multiple heavy metals?. Chemosphere 70(3):531-537

Kabata-Pendias A, Pendias H (1989) Trace Elements in the Soil and Plants. CRC Press. Boca Raton.FL. pp 1-403
Kacálková L, Tlustoš P (2011) The uptake of persistent organic pollutants by plants. Central European J Biol 6(2):223-235

Ker K, Charest C (2010) Nickel remediation by AM-colonized sunflower. Mycorrhiza 20(6):399-406

Kocheva K, Chavdarova M, Gesheva E, Doncheva S, Georgiev G (2015) Implementation of a kinetic model for evaluation of leaf ion leakage from sunflower (Helianthus annuus) plants subjected to high zinc and lead concentrations. Genetics Plant Physiol 5(1):23-28

Kokyo O, Li T, Cheng H, He X, Yonemochi S (2013) Study on tolerance and accumulation potential of biofuel crops for phytoremediation of heavy metals. Inter J Environ Sci Develop 4(2):152-156

Kötschau A, Büchel G, Einax JW, von Tümpling W, Merten D (2014) Sunflower (Helianthus annuus): phytoextraction capacity for heavy metals on a mining-influenced area in Thuringia, Germany. Environ Earth Sci 72(6):2023-2031

Krämer U, Cotter-Howells JD, Charnock JM, Baker AJ, Smith JA (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379(6566):635-638

Krȩżel A, Maret W (2007) Dual nanomolar and picomolar Zn (II) binding properties of metallothionein. J American Chem Soc 129(35):10911-10921

Krystofova O, Shestivska V, Galiova M, Novotny K, Kaiser J, Zehnalek J, Babula P, Opatrilova, R, Adam V, Kizek R (2009) Sunflower plants as bioindicators of environmental pollution with lead (II) ions. Sensors 9(7):5040-5058

Kumar N, Bauddh K, Kumar S, Dwivedi N, Singh DP, Barman SC (2013) Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential. Ecol Eng 61:491-495

Labbé D, Margesin R, Schinner F, Whyte LG, Greer CW (2007) Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon-contaminated Alpine soils. FEMS Microbiol Ecol 59(2):466-475

Lee M, Yang M (2010) Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. J Hazard Mat 173(1-3):589-596

Lelie DV, Schwitzguebel JP, Glass DJ, Vangronsveld J, Baker A (2001) Assessing phytoremediation's progress in the United States and Europe. 35(21):446A-452A

Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis (glutathionato) cadmium. Pro Nat Acad Sci 94(1):42-47

Lothe AG, Hansda A, Kumar V (2016) Phytoremediation of Copper‐Contaminated Soil Using Helianthus annuus, Brassica nigra, and Lycopersicon esculentum Mill.: A Pot Scale Study. Environ Quality Manage 25(4):63-70

Luo C, ShenZ, LiX (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59(1):1-1

Mani D, Sharma B,Kumar C (2007) Phytoaccumulation, interaction, toxicity and remediation of cadmium from Helianthus annuus L.(sunflower). Bulletin Environ Contam Toxicol 79(1):71-79

Marchiol L, Fellet G, Perosa D, Zerbi G (2007) Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiol Biochem 45(5):379-387

Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann, A., Maathuis FJ, Sanders D, Harper JF (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126(4):1646-1667

Mei B, Puryear JD, Newton RJ (2002) Assessment of Cr tolerance and accumulation in selected plant species. Plant and Soil 247(2):223-231

Mukhtar SA, Bhatti HN, Khalid M, Haq MA, Shahzad SM (2010) Potential of sunflower (Helianthus annuus L.) for phytoremediation of nickel (Ni) and lead (Pb) contaminated water. Pak J Bot 42(6):4017-4026

Murphy A, Zhou J, Goldsbrough PB, Taiz L (1997) Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiol (4):1293-1301

Nasser S, Soad E, Fatma E (2014) Phytoremediation of lead and cadmium contaminated soils using sunflower plant. J Stress Physiol Biochem 10(1):123-134

Nehnevajova E, Herzig R, Federer G, Erismann KH,Schwitzguébel JP (2007) Chemical mutagenesis—a promising technique to increase metal concentration and extraction in sunflowers. Inter J Phytoremed 9(2):149-165

Niakan M, Kaghazloo F (2016) Effect of ethylene diamine tetra acetic acid chelator in the presence of chromium on growth and some physiological characteristics of sunflower. Physiol 6(2):1659-1665

Olson PE, Fletcher JS (2000) Ecological recovery of vegetation at a former industrial sludge basin and its implications to phytoremediation. Environ Sci Poll Res 7(4):195-204

Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water, Air, and Soil Pollution 184(1-4):105-126

Patel SJ, Bhattacharya P, Banu S, Bai L, Namratha (2013) Phytoremediation of copper and lead by using sunflower, Indian mustard and water hyacinth plants. Inter J Sci Res 4(3): 113-115

Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60(2):153-162

Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. In Reviews Environ Contam Toxicol 213:113-136

Prapagdee B, Chanprasert M, Mongkolsuk S (2013) Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere 92(6):659-666

Prasad MNV, de Oliveira FHM (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electronic J Biotech 6(3):285-321

Rahman MM, Azirun SM, Boyce AN (2013) Enhanced accumulation of copper and lead in amaranth (Amaranthus paniculatus), Indian mustard (Brassica juncea) and sunflower (Helianthus annuus). PloS one 8(5):e62941

Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: Using plants to clean up the environment. John Wiley and Sons pp 1-304

Raskin I, Kumar PN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Current Opinion Biotech 5(3):285-290

Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Current Opinion Biotech 8(2):221-226

Reeves RD and Baker AJM. (2000) Metal accumulating plants. In Phytoremediation of Toxic Metals: Using plants to clean up the environment. (ed. Raskin, I. and Ensley, B.) – Wiley, New York.; pp 193-229

Roy S, Labelle S, Mehta P, Mihoc A, Fortin N, Masson C, Leblanc R, Châteauneuf G, Sura C, Gallipeau C, Olsen C (2005) Phytoremediation of heavy metal and PAH-contaminated brownfield sites. Plant and Soil 272(1-2):277-290

Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nature Biotech 16(10):925-928

Rungruang N, Babel S, Parkpian P (2011) Screening of potential hyperaccumulator for cadmium from contaminated soil. Desalination Water Treatment 32(1-3):19-26

Saba H, Jyoti P, Neha S (2013) Mycorrhizae and phytochelators as remedy in heavy metal contaminated land remediation. Inter Res J Environ Sci 2(1):74-78

Saleh HM (2012) Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides. Nuclear Eng Design 242:425-432

Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annual Review Plant Boil 49(1):643-668

Schwartz C, Morel JL, Saumier S, Whiting SN, Baker AJ (1999) Root development of the zinc-hyperaccumulator plant Thlaspi caerulescensas affected by metal origin, content and localization in soil. Plant and Soil 208(1):103-115

Seth CS, Misra V, Singh RR, Zolla L (2011) EDTA-enhanced lead phytoremediation in sunflower (Helianthus annuus L.) hydroponic culture. Plant and Soil 347:231. https://doi.org/10.1007/s11104-011-0841-8

Shahandeh H, Hossner LR (2000) Plant screening for chromium phytoremediation. Inter J Phytoremed 2(1):31-51

Shaheen SM, Rinklebe J (2015) Phytoextraction of potentially toxic elements by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil. Environ Geochem Health 37(6):953-967

Shen ZG, Li XD, Wang CC, ChenHM, Chua H (2002) Lead phytoextraction from contaminated soil with high-biomass plant species. J Environ Qual 31(6):1893-1900

Sinegani AS, Khalilikhah F (2008) Phytoextraction of lead by Helianthus annuus: effect of mobilising agent application time. Plant Soil Environ 54(10):434-440

Solhi M, Hajabbasi MA (2005) Heavy metals extraction potential of sunflower (Helianthus annuus) and canola (Brassica napus). Caspian J Environ Sci 3(1):35-42

Spirochova IK, Puncocharova J, Kafka Z, Kubal M, Soudek P, Vanek T (2003) Accumulation of Heavy Metals by in Vitro Cultures of Plants. Water, Air, & Soil Pollution 3: 269-276

StoikouV, Andrianos V, StasinosS, KostakisMG, Attiti S, Thomaidis NS, Zabetakis I (2017) Μetal Uptake by Sunflower (Helianthus annuus) Irrigated with Water Polluted with Chromium and Nickel. Foods 6(7):1-14

Turgut C, Pepe MK, Cutright TJ (2004) The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ Poll 131(1):147-154

Turgut C, Pepe MK, Cutright TJ (2005) The effect of EDTA on Helianthus annuus uptake, selectivity, and translocation of heavy metals when grown in Ohio, New Mexico and Colombia soils. Chemosphere 58(8):1087-1095

Ullah R, Bakht J, Shafi M, Iqbal M, Khan A, Saeed M (2011) Phyto-accumulation of heavy metals by sunflower (Helianthus annuus L.) grown on contaminated soil. African J Biotech 10(75):17192-17198

Usha R, Vasavi A, Thishya K, Rani SJ, Supraja P (2011) Phytoextraction of lead from industrial effluents by Sunflower (Helianthus annuus. L). Rasayan J Chem 4(1):8-12

Vázquez S, Nogales B, Ruberto L, Hernández E, Christie-Oleza J, Balbo AL, Bosch R, Lalucat J, Mac Cormack W (2009) Bacterial community dynamics during bioremediation of diesel oil-contaminated Antarctic soil. Microbial Ecol 57(4):598-610

Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS letters 576(3):306-312

Wenzel WW, Lombi E, Adriano DC (1999) Biogeochemical processes in the rhizosphere: role in phytoremediation of metal-polluted soils in Heavy metal stress in plants. Springer, Berlin, Heidelberg, pp-273-303

Wilson-Corral V, Anderson C, Rodriguez-Lopez M, Arenas-Vargas M, Lopez-Perez J (2011) Phytoextraction of gold and copper from mine tailings with Helianthus annuus L. and Kalanchoe serrata L. Minerals Eng 24(13):1488-1494

Winska-Krysiak M, Koropacka K,Gawronski S (2015) Determination of the tolerance of sunflower to lead-induced stress. J Element 20(2):491-502

Wu J, Hsu FC, Cunningham SD (1999) Chelate-assisted Pb phytoextraction: Pb availability, uptake, and translocation constraints. Environ Sci & Tech 33(11):1898-1904

Wu LH, Luo YM, Christie P, Wong MH (2003) Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere 50(6):819-822

Yeh TY, Pan CT (2012) Effect of Chelating Agents on Copper, Zinc, and Lead Uptake by Sunflower, Chinese Cabbage, Cattail, and Reed for Different Organic Contents of Soils. J Environ Anal Toxicol 2:145. doi:10.4172/2161- 0525.1000145

Y u JK, Mangor J, Thompson L, Edwards KJ, Slabaugh MB, Knapp SJ (2002) Allelic diversity of simple sequence repeats among elite inbred lines of cultivated sunflower. Genome 45(4):652-660

Yurekli FU, Kucukbay ZE (2003) Synthesis of phytochelatins in Helianthus annuus is enhanced by cadmium nitrate. Acta Botanica Croatica 62(1):21-25

Zadeh BM, Savaghebi-Firozabadi GR, Alikhani HA, Hosseini HM (2008) Effect of sunflower and Amaranthus culture and application of inoculants on phytoremediation of the soils contaminated with cadmium. Am Eurasian J Agric Environ Sci 4(1):93-103

Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Inter J Mol Sci 14(4):7405-7432

Zalewska M, Nogalska A (2014) Phytoextraction potential of sunflower and white mustard plants in zinc-contaminated soil. Chilean J Agri Res 74(4):485-489

Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant physiology 121(4):1169-1177

Zou JI, Xu PU, Lu XI, Jiang W, Liu DH (2008) Accumulation of cadmium in three sunflower (Helianthus annuus L.) cultivars. Pak. J. Bot, 40(2):759-765
Published
2018-10-03
How to Cite
[1]
Chauhan, P. and Mathur, J. 2018. Potential of Helianthus annuus for Phytoaccumulation of Multiple Pollutants for Environmental Cleanup:. Journal of Biological Sciences and Medicine. 4, 3 (Oct. 2018).
Section
Review Articles